Metamath Proof Explorer


Theorem supeq1

Description: Equality theorem for supremum. (Contributed by NM, 22-May-1999)

Ref Expression
Assertion supeq1 B=CsupBAR=supCAR

Proof

Step Hyp Ref Expression
1 raleq B=CyB¬xRyyC¬xRy
2 rexeq B=CzByRzzCyRz
3 2 imbi2d B=CyRxzByRzyRxzCyRz
4 3 ralbidv B=CyAyRxzByRzyAyRxzCyRz
5 1 4 anbi12d B=CyB¬xRyyAyRxzByRzyC¬xRyyAyRxzCyRz
6 5 rabbidv B=CxA|yB¬xRyyAyRxzByRz=xA|yC¬xRyyAyRxzCyRz
7 6 unieqd B=CxA|yB¬xRyyAyRxzByRz=xA|yC¬xRyyAyRxzCyRz
8 df-sup supBAR=xA|yB¬xRyyAyRxzByRz
9 df-sup supCAR=xA|yC¬xRyyAyRxzCyRz
10 7 8 9 3eqtr4g B=CsupBAR=supCAR