Metamath Proof Explorer


Theorem supeq2

Description: Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion supeq2 B=CsupABR=supACR

Proof

Step Hyp Ref Expression
1 rabeq B=CxB|yA¬xRyyByRxzAyRz=xC|yA¬xRyyByRxzAyRz
2 raleq B=CyByRxzAyRzyCyRxzAyRz
3 2 anbi2d B=CyA¬xRyyByRxzAyRzyA¬xRyyCyRxzAyRz
4 3 rabbidv B=CxC|yA¬xRyyByRxzAyRz=xC|yA¬xRyyCyRxzAyRz
5 1 4 eqtrd B=CxB|yA¬xRyyByRxzAyRz=xC|yA¬xRyyCyRxzAyRz
6 5 unieqd B=CxB|yA¬xRyyByRxzAyRz=xC|yA¬xRyyCyRxzAyRz
7 df-sup supABR=xB|yA¬xRyyByRxzAyRz
8 df-sup supACR=xC|yA¬xRyyCyRxzAyRz
9 6 7 8 3eqtr4g B=CsupABR=supACR