Metamath Proof Explorer


Theorem superficl

Description: The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020) (Proof shortened by RP, 3-Jan-2020)

Ref Expression
Hypothesis superficl.a A=z|Bz
Assertion superficl xAyAxyA

Proof

Step Hyp Ref Expression
1 superficl.a A=z|Bz
2 vex xV
3 2 inex1 xyV
4 sseq2 z=xyBzBxy
5 sseq2 z=xBzBx
6 sseq2 z=yBzBy
7 ssin BxByBxy
8 7 biimpi BxByBxy
9 1 3 4 5 6 8 cllem0 xAyAxyA