Description: Lemma for supiso . (Contributed by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supiso.1 | |
|
supiso.2 | |
||
supisoex.3 | |
||
Assertion | supisoex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supiso.1 | |
|
2 | supiso.2 | |
|
3 | supisoex.3 | |
|
4 | simpl | |
|
5 | simpr | |
|
6 | 4 5 | supisolem | |
7 | isof1o | |
|
8 | f1of | |
|
9 | 4 7 8 | 3syl | |
10 | 9 | ffvelcdmda | |
11 | breq1 | |
|
12 | 11 | notbid | |
13 | 12 | ralbidv | |
14 | breq2 | |
|
15 | 14 | imbi1d | |
16 | 15 | ralbidv | |
17 | 13 16 | anbi12d | |
18 | 17 | rspcev | |
19 | 18 | ex | |
20 | 10 19 | syl | |
21 | 6 20 | sylbid | |
22 | 21 | rexlimdva | |
23 | 1 2 22 | syl2anc | |
24 | 3 23 | mpd | |