Metamath Proof Explorer


Theorem supisoex

Description: Lemma for supiso . (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypotheses supiso.1 φFIsomR,SAB
supiso.2 φCA
supisoex.3 φxAyC¬xRyyAyRxzCyRz
Assertion supisoex φuBwFC¬uSwwBwSuvFCwSv

Proof

Step Hyp Ref Expression
1 supiso.1 φFIsomR,SAB
2 supiso.2 φCA
3 supisoex.3 φxAyC¬xRyyAyRxzCyRz
4 simpl FIsomR,SABCAFIsomR,SAB
5 simpr FIsomR,SABCACA
6 4 5 supisolem FIsomR,SABCAxAyC¬xRyyAyRxzCyRzwFC¬FxSwwBwSFxvFCwSv
7 isof1o FIsomR,SABF:A1-1 ontoB
8 f1of F:A1-1 ontoBF:AB
9 4 7 8 3syl FIsomR,SABCAF:AB
10 9 ffvelcdmda FIsomR,SABCAxAFxB
11 breq1 u=FxuSwFxSw
12 11 notbid u=Fx¬uSw¬FxSw
13 12 ralbidv u=FxwFC¬uSwwFC¬FxSw
14 breq2 u=FxwSuwSFx
15 14 imbi1d u=FxwSuvFCwSvwSFxvFCwSv
16 15 ralbidv u=FxwBwSuvFCwSvwBwSFxvFCwSv
17 13 16 anbi12d u=FxwFC¬uSwwBwSuvFCwSvwFC¬FxSwwBwSFxvFCwSv
18 17 rspcev FxBwFC¬FxSwwBwSFxvFCwSvuBwFC¬uSwwBwSuvFCwSv
19 18 ex FxBwFC¬FxSwwBwSFxvFCwSvuBwFC¬uSwwBwSuvFCwSv
20 10 19 syl FIsomR,SABCAxAwFC¬FxSwwBwSFxvFCwSvuBwFC¬uSwwBwSuvFCwSv
21 6 20 sylbid FIsomR,SABCAxAyC¬xRyyAyRxzCyRzuBwFC¬uSwwBwSuvFCwSv
22 21 rexlimdva FIsomR,SABCAxAyC¬xRyyAyRxzCyRzuBwFC¬uSwwBwSuvFCwSv
23 1 2 22 syl2anc φxAyC¬xRyyAyRxzCyRzuBwFC¬uSwwBwSuvFCwSv
24 3 23 mpd φuBwFC¬uSwwBwSuvFCwSv