Metamath Proof Explorer


Theorem suppcofnd

Description: The support of the composition of two functions. (Contributed by SN, 15-Sep-2023)

Ref Expression
Hypotheses suppcofnd.z φ Z U
suppcofnd.f φ F Fn A
suppcofnd.a φ A V
suppcofnd.g φ G Fn B
suppcofnd.b φ B W
Assertion suppcofnd φ F G supp Z = x B | G x A F G x Z

Proof

Step Hyp Ref Expression
1 suppcofnd.z φ Z U
2 suppcofnd.f φ F Fn A
3 suppcofnd.a φ A V
4 suppcofnd.g φ G Fn B
5 suppcofnd.b φ B W
6 2 3 fnexd φ F V
7 4 5 fnexd φ G V
8 suppco F V G V F G supp Z = G -1 F supp Z
9 6 7 8 syl2anc φ F G supp Z = G -1 F supp Z
10 fncnvima2 G Fn B G -1 F supp Z = x B | G x supp Z F
11 4 10 syl φ G -1 F supp Z = x B | G x supp Z F
12 elsuppfn F Fn A A V Z U G x supp Z F G x A F G x Z
13 2 3 1 12 syl3anc φ G x supp Z F G x A F G x Z
14 13 rabbidv φ x B | G x supp Z F = x B | G x A F G x Z
15 9 11 14 3eqtrd φ F G supp Z = x B | G x A F G x Z