Metamath Proof Explorer


Theorem suppvalfng

Description: The value of the operation constructing the support of a function with a given domain. This version of suppvalfn assumes F is a set rather than its domain X , avoiding ax-rep . (Contributed by SN, 5-Aug-2024)

Ref Expression
Assertion suppvalfng FFnXFVZWFsuppZ=iX|FiZ

Proof

Step Hyp Ref Expression
1 fnfun FFnXFunF
2 suppval1 FunFFVZWFsuppZ=idomF|FiZ
3 1 2 syl3an1 FFnXFVZWFsuppZ=idomF|FiZ
4 fndm FFnXdomF=X
5 4 3ad2ant1 FFnXFVZWdomF=X
6 5 rabeqdv FFnXFVZWidomF|FiZ=iX|FiZ
7 3 6 eqtrd FFnXFVZWFsuppZ=iX|FiZ