Metamath Proof Explorer


Theorem suprlub

Description: The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Assertion suprlub AAxyAyxBB<supA<zAB<z

Proof

Step Hyp Ref Expression
1 ltso <Or
2 1 a1i AAxyAyx<Or
3 sup3 AAxyAyxxyA¬x<yyy<xwAy<w
4 simp1 AAxyAyxA
5 2 3 4 suplub2 AAxyAyxBB<supA<wAB<w
6 breq2 w=zB<wB<z
7 6 cbvrexvw wAB<wzAB<z
8 5 7 bitrdi AAxyAyxBB<supA<zAB<z