Metamath Proof Explorer


Theorem suprnub

Description: An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Assertion suprnub AAxyAyxB¬B<supA<zA¬B<z

Proof

Step Hyp Ref Expression
1 suprlub AAxyAyxBB<supA<zAB<z
2 1 notbid AAxyAyxB¬B<supA<¬zAB<z
3 ralnex zA¬B<z¬zAB<z
4 2 3 bitr4di AAxyAyxB¬B<supA<zA¬B<z