Metamath Proof Explorer


Theorem supxr

Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006) (Revised by Mario Carneiro, 21-Apr-2015)

Ref Expression
Assertion supxr A*B*xA¬B<xxx<ByAx<ysupA*<=B

Proof

Step Hyp Ref Expression
1 simplr A*B*xA¬B<xxx<ByAx<yB*
2 simprl A*B*xA¬B<xxx<ByAx<yxA¬B<x
3 xrub A*B*xx<ByAx<yx*x<ByAx<y
4 3 biimpa A*B*xx<ByAx<yx*x<ByAx<y
5 4 adantrl A*B*xA¬B<xxx<ByAx<yx*x<ByAx<y
6 xrltso <Or*
7 6 a1i <Or*
8 7 eqsup B*xA¬B<xx*x<ByAx<ysupA*<=B
9 8 mptru B*xA¬B<xx*x<ByAx<ysupA*<=B
10 1 2 5 9 syl3anc A*B*xA¬B<xxx<ByAx<ysupA*<=B