Metamath Proof Explorer


Theorem supxrrernmpt

Description: The real and extended real indexed suprema match when the indexed real supremum exists. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses supxrrernmpt.x xφ
supxrrernmpt.a φA
supxrrernmpt.b φxAB
supxrrernmpt.y φyxABy
Assertion supxrrernmpt φsupranxAB*<=supranxAB<

Proof

Step Hyp Ref Expression
1 supxrrernmpt.x xφ
2 supxrrernmpt.a φA
3 supxrrernmpt.b φxAB
4 supxrrernmpt.y φyxABy
5 eqid xAB=xAB
6 1 5 3 rnmptssd φranxAB
7 1 3 5 2 rnmptn0 φranxAB
8 1 4 rnmptbdd φyzranxABzy
9 supxrre ranxABranxAByzranxABzysupranxAB*<=supranxAB<
10 6 7 8 9 syl3anc φsupranxAB*<=supranxAB<