Metamath Proof Explorer


Theorem swapf1a

Description: The object part of the swap functor swaps the objects. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1a.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapf1a.s S = C × c D
swapf1a.b B = Base S
swapf1a.x φ X B
Assertion swapf1a φ O X = 2 nd X 1 st X

Proof

Step Hyp Ref Expression
1 swapf1a.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
2 swapf1a.s S = C × c D
3 swapf1a.b B = Base S
4 swapf1a.x φ X B
5 2 3 4 elxpcbasex1 φ C V
6 2 3 4 elxpcbasex2 φ D V
7 5 6 2 3 1 swapf1val φ O = x B x -1
8 simpr φ x = X x = X
9 8 sneqd φ x = X x = X
10 9 cnveqd φ x = X x -1 = X -1
11 10 unieqd φ x = X x -1 = X -1
12 eqid Base C = Base C
13 eqid Base D = Base D
14 2 12 13 xpcbas Base C × Base D = Base S
15 3 14 eqtr4i B = Base C × Base D
16 4 15 eleqtrdi φ X Base C × Base D
17 2nd1st X Base C × Base D X -1 = 2 nd X 1 st X
18 16 17 syl φ X -1 = 2 nd X 1 st X
19 18 adantr φ x = X X -1 = 2 nd X 1 st X
20 11 19 eqtrd φ x = X x -1 = 2 nd X 1 st X
21 opex 2 nd X 1 st X V
22 21 a1i φ 2 nd X 1 st X V
23 7 20 4 22 fvmptd φ O X = 2 nd X 1 st X