Metamath Proof Explorer


Theorem swrdccatin2d

Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018) (Revised by Mario Carneiro/AV, 21-Oct-2018)

Ref Expression
Hypotheses swrdccatind.l φA=L
swrdccatind.w φAWordVBWordV
swrdccatin2d.1 φMLN
swrdccatin2d.2 φNLL+B
Assertion swrdccatin2d φA++BsubstrMN=BsubstrMLNL

Proof

Step Hyp Ref Expression
1 swrdccatind.l φA=L
2 swrdccatind.w φAWordVBWordV
3 swrdccatin2d.1 φMLN
4 swrdccatin2d.2 φNLL+B
5 2 adantl A=LφAWordVBWordV
6 3 4 jca φMLNNLL+B
7 6 adantl A=LφMLNNLL+B
8 oveq1 A=LAN=LN
9 8 eleq2d A=LMANMLN
10 id A=LA=L
11 oveq1 A=LA+B=L+B
12 10 11 oveq12d A=LAA+B=LL+B
13 12 eleq2d A=LNAA+BNLL+B
14 9 13 anbi12d A=LMANNAA+BMLNNLL+B
15 14 adantr A=LφMANNAA+BMLNNLL+B
16 7 15 mpbird A=LφMANNAA+B
17 5 16 jca A=LφAWordVBWordVMANNAA+B
18 17 ex A=LφAWordVBWordVMANNAA+B
19 eqid A=A
20 19 swrdccatin2 AWordVBWordVMANNAA+BA++BsubstrMN=BsubstrMANA
21 20 imp AWordVBWordVMANNAA+BA++BsubstrMN=BsubstrMANA
22 18 21 syl6 A=LφA++BsubstrMN=BsubstrMANA
23 oveq2 A=LMA=ML
24 oveq2 A=LNA=NL
25 23 24 opeq12d A=LMANA=MLNL
26 25 oveq2d A=LBsubstrMANA=BsubstrMLNL
27 26 eqeq2d A=LA++BsubstrMN=BsubstrMANAA++BsubstrMN=BsubstrMLNL
28 22 27 sylibd A=LφA++BsubstrMN=BsubstrMLNL
29 1 28 mpcom φA++BsubstrMN=BsubstrMLNL