Metamath Proof Explorer


Theorem symg1hash

Description: The symmetric group on a singleton has cardinality 1 . (Contributed by AV, 9-Dec-2018)

Ref Expression
Hypotheses symg1bas.1 G=SymGrpA
symg1bas.2 B=BaseG
symg1bas.0 A=I
Assertion symg1hash IVB=1

Proof

Step Hyp Ref Expression
1 symg1bas.1 G=SymGrpA
2 symg1bas.2 B=BaseG
3 symg1bas.0 A=I
4 snfi IFin
5 3 4 eqeltri AFin
6 1 2 symghash AFinB=A!
7 5 6 ax-mp B=A!
8 3 fveq2i A=I
9 hashsng IVI=1
10 8 9 eqtrid IVA=1
11 10 fveq2d IVA!=1!
12 fac1 1!=1
13 11 12 eqtrdi IVA!=1
14 7 13 eqtrid IVB=1