Metamath Proof Explorer


Theorem symgextf

Description: The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019)

Ref Expression
Hypotheses symgext.s S=BaseSymGrpNK
symgext.e E=xNifx=KKZx
Assertion symgextf KNZSE:NN

Proof

Step Hyp Ref Expression
1 symgext.s S=BaseSymGrpNK
2 symgext.e E=xNifx=KKZx
3 simplll KNZSxNx=KKN
4 simpllr KNZSxN¬x=KZS
5 simpr KNZSxNxN
6 neqne ¬x=KxK
7 5 6 anim12i KNZSxN¬x=KxNxK
8 eldifsn xNKxNxK
9 7 8 sylibr KNZSxN¬x=KxNK
10 eqid SymGrpNK=SymGrpNK
11 10 1 symgfv ZSxNKZxNK
12 4 9 11 syl2anc KNZSxN¬x=KZxNK
13 12 eldifad KNZSxN¬x=KZxN
14 3 13 ifclda KNZSxNifx=KKZxN
15 14 2 fmptd KNZSE:NN