Metamath Proof Explorer


Theorem symgextfve

Description: The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019)

Ref Expression
Hypotheses symgext.s S=BaseSymGrpNK
symgext.e E=xNifx=KKZx
Assertion symgextfve KNX=KEX=K

Proof

Step Hyp Ref Expression
1 symgext.s S=BaseSymGrpNK
2 symgext.e E=xNifx=KKZx
3 fveq2 X=KEX=EK
4 iftrue x=Kifx=KKZx=K
5 4 2 fvmptg KNKNEK=K
6 5 anidms KNEK=K
7 3 6 sylan9eqr KNX=KEX=K
8 7 ex KNX=KEX=K