Metamath Proof Explorer


Theorem symgextf1lem

Description: Lemma for symgextf1 . (Contributed by AV, 6-Jan-2019)

Ref Expression
Hypotheses symgext.s S=BaseSymGrpNK
symgext.e E=xNifx=KKZx
Assertion symgextf1lem KNZSXNKYKEXEY

Proof

Step Hyp Ref Expression
1 symgext.s S=BaseSymGrpNK
2 symgext.e E=xNifx=KKZx
3 eqid SymGrpNK=SymGrpNK
4 3 1 symgfv ZSXNKZXNK
5 4 adantll KNZSXNKZXNK
6 eldifsni ZXNKZXK
7 1 2 symgextfv KNZSXNKEX=ZX
8 7 imp KNZSXNKEX=ZX
9 8 neeq1d KNZSXNKEXKZXK
10 6 9 imbitrrid KNZSXNKZXNKEXK
11 5 10 mpd KNZSXNKEXK
12 11 adantrr KNZSXNKYKEXK
13 elsni YKY=K
14 1 2 symgextfve KNY=KEY=K
15 14 adantr KNZSY=KEY=K
16 13 15 syl5com YKKNZSEY=K
17 16 adantl XNKYKKNZSEY=K
18 17 impcom KNZSXNKYKEY=K
19 12 18 neeqtrrd KNZSXNKYKEXEY
20 19 ex KNZSXNKYKEXEY