Metamath Proof Explorer


Theorem symggen2

Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in Rotman p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses symgtrf.t T=ranpmTrspD
symgtrf.g G=SymGrpD
symgtrf.b B=BaseG
symggen.k K=mrClsSubMndG
Assertion symggen2 DFinKT=B

Proof

Step Hyp Ref Expression
1 symgtrf.t T=ranpmTrspD
2 symgtrf.g G=SymGrpD
3 symgtrf.b B=BaseG
4 symggen.k K=mrClsSubMndG
5 1 2 3 4 symggen DFinKT=xB|domxIFin
6 difss xIx
7 dmss xIxdomxIdomx
8 6 7 ax-mp domxIdomx
9 2 3 symgbasf1o xBx:D1-1 ontoD
10 f1odm x:D1-1 ontoDdomx=D
11 9 10 syl xBdomx=D
12 8 11 sseqtrid xBdomxID
13 ssfi DFindomxIDdomxIFin
14 12 13 sylan2 DFinxBdomxIFin
15 14 ralrimiva DFinxBdomxIFin
16 rabid2 B=xB|domxIFinxBdomxIFin
17 15 16 sylibr DFinB=xB|domxIFin
18 5 17 eqtr4d DFinKT=B