Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in Rotman p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgtrf.t | |
|
symgtrf.g | |
||
symgtrf.b | |
||
symggen.k | |
||
Assertion | symggen2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgtrf.t | |
|
2 | symgtrf.g | |
|
3 | symgtrf.b | |
|
4 | symggen.k | |
|
5 | 1 2 3 4 | symggen | |
6 | difss | |
|
7 | dmss | |
|
8 | 6 7 | ax-mp | |
9 | 2 3 | symgbasf1o | |
10 | f1odm | |
|
11 | 9 10 | syl | |
12 | 8 11 | sseqtrid | |
13 | ssfi | |
|
14 | 12 13 | sylan2 | |
15 | 14 | ralrimiva | |
16 | rabid2 | |
|
17 | 15 16 | sylibr | |
18 | 5 17 | eqtr4d | |