Metamath Proof Explorer


Theorem symreleq

Description: Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion symreleq R=SSymRelRSymRelS

Proof

Step Hyp Ref Expression
1 cnveq R=SR-1=S-1
2 id R=SR=S
3 1 2 sseq12d R=SR-1RS-1S
4 releq R=SRelRRelS
5 3 4 anbi12d R=SR-1RRelRS-1SRelS
6 dfsymrel2 SymRelRR-1RRelR
7 dfsymrel2 SymRelSS-1SRelS
8 5 6 7 3bitr4g R=SSymRelRSymRelS