Metamath Proof Explorer


Theorem taupilemrplb

Description: A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019)

Ref Expression
Assertion taupilemrplb xy+Axy

Proof

Step Hyp Ref Expression
1 0re 0
2 inss1 +A+
3 2 sseli y+Ay+
4 3 rpge0d y+A0y
5 4 rgen y+A0y
6 breq1 x=0xy0y
7 6 ralbidv x=0y+Axyy+A0y
8 7 rspcev 0y+A0yxy+Axy
9 1 5 8 mp2an xy+Axy