Metamath Proof Explorer


Theorem tcphval

Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses tcphval.n G=toCPreHilW
tcphval.v V=BaseW
tcphval.h ,˙=𝑖W
Assertion tcphval G=WtoNrmGrpxVx,˙x

Proof

Step Hyp Ref Expression
1 tcphval.n G=toCPreHilW
2 tcphval.v V=BaseW
3 tcphval.h ,˙=𝑖W
4 id w=Ww=W
5 fveq2 w=WBasew=BaseW
6 5 2 eqtr4di w=WBasew=V
7 fveq2 w=W𝑖w=𝑖W
8 7 3 eqtr4di w=W𝑖w=,˙
9 8 oveqd w=Wx𝑖wx=x,˙x
10 9 fveq2d w=Wx𝑖wx=x,˙x
11 6 10 mpteq12dv w=WxBasewx𝑖wx=xVx,˙x
12 4 11 oveq12d w=WwtoNrmGrpxBasewx𝑖wx=WtoNrmGrpxVx,˙x
13 df-tcph toCPreHil=wVwtoNrmGrpxBasewx𝑖wx
14 ovex WtoNrmGrpxVx,˙xV
15 12 13 14 fvmpt WVtoCPreHilW=WtoNrmGrpxVx,˙x
16 fvprc ¬WVtoCPreHilW=
17 reldmtng ReldomtoNrmGrp
18 17 ovprc1 ¬WVWtoNrmGrpxVx,˙x=
19 16 18 eqtr4d ¬WVtoCPreHilW=WtoNrmGrpxVx,˙x
20 15 19 pm2.61i toCPreHilW=WtoNrmGrpxVx,˙x
21 1 20 eqtri G=WtoNrmGrpxVx,˙x