Metamath Proof Explorer


Theorem tcphval

Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses tcphval.n G = toCPreHil W
tcphval.v V = Base W
tcphval.h , ˙ = 𝑖 W
Assertion tcphval G = W toNrmGrp x V x , ˙ x

Proof

Step Hyp Ref Expression
1 tcphval.n G = toCPreHil W
2 tcphval.v V = Base W
3 tcphval.h , ˙ = 𝑖 W
4 id w = W w = W
5 fveq2 w = W Base w = Base W
6 5 2 syl6eqr w = W Base w = V
7 fveq2 w = W 𝑖 w = 𝑖 W
8 7 3 syl6eqr w = W 𝑖 w = , ˙
9 8 oveqd w = W x 𝑖 w x = x , ˙ x
10 9 fveq2d w = W x 𝑖 w x = x , ˙ x
11 6 10 mpteq12dv w = W x Base w x 𝑖 w x = x V x , ˙ x
12 4 11 oveq12d w = W w toNrmGrp x Base w x 𝑖 w x = W toNrmGrp x V x , ˙ x
13 df-tcph toCPreHil = w V w toNrmGrp x Base w x 𝑖 w x
14 ovex W toNrmGrp x V x , ˙ x V
15 12 13 14 fvmpt W V toCPreHil W = W toNrmGrp x V x , ˙ x
16 fvprc ¬ W V toCPreHil W =
17 reldmtng Rel dom toNrmGrp
18 17 ovprc1 ¬ W V W toNrmGrp x V x , ˙ x =
19 16 18 eqtr4d ¬ W V toCPreHil W = W toNrmGrp x V x , ˙ x
20 15 19 pm2.61i toCPreHil W = W toNrmGrp x V x , ˙ x
21 1 20 eqtri G = W toNrmGrp x V x , ˙ x