Metamath Proof Explorer


Theorem telfsumo2

Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses telfsumo.1 k=jA=B
telfsumo.2 k=j+1A=C
telfsumo.3 k=MA=D
telfsumo.4 k=NA=E
telfsumo.5 φNM
telfsumo.6 φkMNA
Assertion telfsumo2 φjM..^NCB=ED

Proof

Step Hyp Ref Expression
1 telfsumo.1 k=jA=B
2 telfsumo.2 k=j+1A=C
3 telfsumo.3 k=MA=D
4 telfsumo.4 k=NA=E
5 telfsumo.5 φNM
6 telfsumo.6 φkMNA
7 1 negeqd k=jA=B
8 2 negeqd k=j+1A=C
9 3 negeqd k=MA=D
10 4 negeqd k=NA=E
11 6 negcld φkMNA
12 7 8 9 10 5 11 telfsumo φjM..^N-B-C=-D-E
13 6 ralrimiva φkMNA
14 elfzofz jM..^NjMN
15 1 eleq1d k=jAB
16 15 rspccva kMNAjMNB
17 13 14 16 syl2an φjM..^NB
18 fzofzp1 jM..^Nj+1MN
19 2 eleq1d k=j+1AC
20 19 rspccva kMNAj+1MNC
21 13 18 20 syl2an φjM..^NC
22 17 21 neg2subd φjM..^N-B-C=CB
23 22 sumeq2dv φjM..^N-B-C=jM..^NCB
24 3 eleq1d k=MAD
25 eluzfz1 NMMMN
26 5 25 syl φMMN
27 24 13 26 rspcdva φD
28 4 eleq1d k=NAE
29 eluzfz2 NMNMN
30 5 29 syl φNMN
31 28 13 30 rspcdva φE
32 27 31 neg2subd φ-D-E=ED
33 12 23 32 3eqtr3d φjM..^NCB=ED