Metamath Proof Explorer


Theorem telgsumfz0

Description: Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum . (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses telgsumfz0.k K = Base G
telgsumfz0.g φ G Abel
telgsumfz0.m - ˙ = - G
telgsumfz0.s φ S 0
telgsumfz0.f φ k 0 S + 1 A K
telgsumfz0.a k = i A = B
telgsumfz0.c k = i + 1 A = C
telgsumfz0.d k = 0 A = D
telgsumfz0.e k = S + 1 A = E
Assertion telgsumfz0 φ G i = 0 S B - ˙ C = D - ˙ E

Proof

Step Hyp Ref Expression
1 telgsumfz0.k K = Base G
2 telgsumfz0.g φ G Abel
3 telgsumfz0.m - ˙ = - G
4 telgsumfz0.s φ S 0
5 telgsumfz0.f φ k 0 S + 1 A K
6 telgsumfz0.a k = i A = B
7 telgsumfz0.c k = i + 1 A = C
8 telgsumfz0.d k = 0 A = D
9 telgsumfz0.e k = S + 1 A = E
10 simpr φ i 0 S i 0 S
11 6 adantl φ i 0 S k = i A = B
12 10 11 csbied φ i 0 S i / k A = B
13 12 eqcomd φ i 0 S B = i / k A
14 ovexd φ i 0 S i + 1 V
15 7 adantl φ i 0 S k = i + 1 A = C
16 14 15 csbied φ i 0 S i + 1 / k A = C
17 16 eqcomd φ i 0 S C = i + 1 / k A
18 13 17 oveq12d φ i 0 S B - ˙ C = i / k A - ˙ i + 1 / k A
19 18 mpteq2dva φ i 0 S B - ˙ C = i 0 S i / k A - ˙ i + 1 / k A
20 19 oveq2d φ G i = 0 S B - ˙ C = G i = 0 S i / k A - ˙ i + 1 / k A
21 1 2 3 4 5 telgsumfz0s φ G i = 0 S i / k A - ˙ i + 1 / k A = 0 / k A - ˙ S + 1 / k A
22 c0ex 0 V
23 22 a1i φ 0 V
24 8 adantl φ k = 0 A = D
25 23 24 csbied φ 0 / k A = D
26 ovexd φ S + 1 V
27 9 adantl φ k = S + 1 A = E
28 26 27 csbied φ S + 1 / k A = E
29 25 28 oveq12d φ 0 / k A - ˙ S + 1 / k A = D - ˙ E
30 20 21 29 3eqtrd φ G i = 0 S B - ˙ C = D - ˙ E