Metamath Proof Explorer


Theorem tendo0plr

Description: Property of the additive identity endormorphism. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses tendo0.b B=BaseK
tendo0.h H=LHypK
tendo0.t T=LTrnKW
tendo0.e E=TEndoKW
tendo0.o O=fTIB
tendo0pl.p P=sE,tEfTsftf
Assertion tendo0plr KHLWHSESPO=S

Proof

Step Hyp Ref Expression
1 tendo0.b B=BaseK
2 tendo0.h H=LHypK
3 tendo0.t T=LTrnKW
4 tendo0.e E=TEndoKW
5 tendo0.o O=fTIB
6 tendo0pl.p P=sE,tEfTsftf
7 1 2 3 4 5 tendo0cl KHLWHOE
8 7 adantr KHLWHSEOE
9 2 3 4 6 tendoplcom KHLWHSEOESPO=OPS
10 8 9 mpd3an3 KHLWHSESPO=OPS
11 1 2 3 4 5 6 tendo0pl KHLWHSEOPS=S
12 10 11 eqtrd KHLWHSESPO=S