Metamath Proof Explorer


Theorem termcbas2

Description: The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses termcbas.c No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
termcbas.b B = Base C
termcbasmo.x φ X B
Assertion termcbas2 φ B = X

Proof

Step Hyp Ref Expression
1 termcbas.c Could not format ( ph -> C e. TermCat ) : No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
2 termcbas.b B = Base C
3 termcbasmo.x φ X B
4 1 2 termcbas φ x B = x
5 simpr φ B = x B = x
6 3 adantr φ B = x X B
7 6 5 eleqtrd φ B = x X x
8 elsni X x X = x
9 8 sneqd X x X = x
10 7 9 syl φ B = x X = x
11 5 10 eqtr4d φ B = x B = X
12 4 11 exlimddv φ B = X