Metamath Proof Explorer


Theorem termolmd

Description: Terminal objects are the object part of limits of the empty diagram. (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Assertion termolmd Could not format assertion : No typesetting found for |- ( TermO ` C ) = dom ( (/) ( C Limit (/) ) (/) ) with typecode |-

Proof

Step Hyp Ref Expression
1 termorcl x TermO C C Cat
2 vex x V
3 2 eldm Could not format ( x e. dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) <-> E. y x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y ) : No typesetting found for |- ( x e. dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) <-> E. y x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y ) with typecode |-
4 df-br Could not format ( x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y <-> <. x , y >. e. ( ( C Limit (/) ) ` <. (/) , (/) >. ) ) : No typesetting found for |- ( x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y <-> <. x , y >. e. ( ( C Limit (/) ) ` <. (/) , (/) >. ) ) with typecode |-
5 lmdrcl Could not format ( <. x , y >. e. ( ( C Limit (/) ) ` <. (/) , (/) >. ) -> <. (/) , (/) >. e. ( (/) Func C ) ) : No typesetting found for |- ( <. x , y >. e. ( ( C Limit (/) ) ` <. (/) , (/) >. ) -> <. (/) , (/) >. e. ( (/) Func C ) ) with typecode |-
6 4 5 sylbi Could not format ( x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y -> <. (/) , (/) >. e. ( (/) Func C ) ) : No typesetting found for |- ( x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y -> <. (/) , (/) >. e. ( (/) Func C ) ) with typecode |-
7 6 func1st2nd Could not format ( x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y -> ( 1st ` <. (/) , (/) >. ) ( (/) Func C ) ( 2nd ` <. (/) , (/) >. ) ) : No typesetting found for |- ( x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y -> ( 1st ` <. (/) , (/) >. ) ( (/) Func C ) ( 2nd ` <. (/) , (/) >. ) ) with typecode |-
8 7 funcrcl3 Could not format ( x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y -> C e. Cat ) : No typesetting found for |- ( x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y -> C e. Cat ) with typecode |-
9 8 exlimiv Could not format ( E. y x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y -> C e. Cat ) : No typesetting found for |- ( E. y x ( ( C Limit (/) ) ` <. (/) , (/) >. ) y -> C e. Cat ) with typecode |-
10 3 9 sylbi Could not format ( x e. dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) -> C e. Cat ) : No typesetting found for |- ( x e. dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) -> C e. Cat ) with typecode |-
11 initocmd Could not format ( InitO ` ( oppCat ` C ) ) = dom ( (/) ( ( oppCat ` C ) Colimit (/) ) (/) ) : No typesetting found for |- ( InitO ` ( oppCat ` C ) ) = dom ( (/) ( ( oppCat ` C ) Colimit (/) ) (/) ) with typecode |-
12 oppctermo x TermO C x InitO oppCat C
13 12 eqriv TermO C = InitO oppCat C
14 13 a1i C Cat TermO C = InitO oppCat C
15 eqid oppCat C = oppCat C
16 15 2oppchomf Hom 𝑓 C = Hom 𝑓 oppCat oppCat C
17 16 a1i C Cat Hom 𝑓 C = Hom 𝑓 oppCat oppCat C
18 15 2oppccomf comp 𝑓 C = comp 𝑓 oppCat oppCat C
19 18 a1i C Cat comp 𝑓 C = comp 𝑓 oppCat oppCat C
20 ral0 x y x Hom y = x Hom oppCat y
21 eqid Hom = Hom
22 eqid Hom oppCat = Hom oppCat
23 base0 = Base
24 23 a1i C Cat = Base
25 eqid oppCat = oppCat
26 25 23 oppcbas = Base oppCat
27 26 a1i C Cat = Base oppCat
28 21 22 24 27 homfeq C Cat Hom 𝑓 = Hom 𝑓 oppCat x y x Hom y = x Hom oppCat y
29 20 28 mpbiri C Cat Hom 𝑓 = Hom 𝑓 oppCat
30 ral0 x y z f x Hom y g y Hom z g x y comp z f = g x y comp oppCat z f
31 eqid comp = comp
32 eqid comp oppCat = comp oppCat
33 31 32 21 24 27 29 comfeq C Cat comp 𝑓 = comp 𝑓 oppCat x y z f x Hom y g y Hom z g x y comp z f = g x y comp oppCat z f
34 30 33 mpbiri C Cat comp 𝑓 = comp 𝑓 oppCat
35 elex C Cat C V
36 fvexd C Cat oppCat oppCat C V
37 0ex V
38 37 a1i C Cat V
39 fvexd C Cat oppCat V
40 17 19 29 34 35 36 38 39 lmdpropd Could not format ( C e. Cat -> ( C Limit (/) ) = ( ( oppCat ` ( oppCat ` C ) ) Limit ( oppCat ` (/) ) ) ) : No typesetting found for |- ( C e. Cat -> ( C Limit (/) ) = ( ( oppCat ` ( oppCat ` C ) ) Limit ( oppCat ` (/) ) ) ) with typecode |-
41 eqidd C Cat =
42 0cat Cat
43 42 a1i C Cat Cat
44 43 24 43 0funcg2 C Cat Func = =
45 41 41 44 mpbir2and C Cat Func
46 oppfval Could not format ( (/) ( (/) Func (/) ) (/) -> ( (/) oppFunc (/) ) = <. (/) , tpos (/) >. ) : No typesetting found for |- ( (/) ( (/) Func (/) ) (/) -> ( (/) oppFunc (/) ) = <. (/) , tpos (/) >. ) with typecode |-
47 45 46 syl Could not format ( C e. Cat -> ( (/) oppFunc (/) ) = <. (/) , tpos (/) >. ) : No typesetting found for |- ( C e. Cat -> ( (/) oppFunc (/) ) = <. (/) , tpos (/) >. ) with typecode |-
48 tpos0 tpos =
49 48 opeq2i tpos =
50 47 49 eqtr2di Could not format ( C e. Cat -> <. (/) , (/) >. = ( (/) oppFunc (/) ) ) : No typesetting found for |- ( C e. Cat -> <. (/) , (/) >. = ( (/) oppFunc (/) ) ) with typecode |-
51 40 50 fveq12d Could not format ( C e. Cat -> ( ( C Limit (/) ) ` <. (/) , (/) >. ) = ( ( ( oppCat ` ( oppCat ` C ) ) Limit ( oppCat ` (/) ) ) ` ( (/) oppFunc (/) ) ) ) : No typesetting found for |- ( C e. Cat -> ( ( C Limit (/) ) ` <. (/) , (/) >. ) = ( ( ( oppCat ` ( oppCat ` C ) ) Limit ( oppCat ` (/) ) ) ` ( (/) oppFunc (/) ) ) ) with typecode |-
52 df-ov Could not format ( (/) ( ( oppCat ` C ) Colimit (/) ) (/) ) = ( ( ( oppCat ` C ) Colimit (/) ) ` <. (/) , (/) >. ) : No typesetting found for |- ( (/) ( ( oppCat ` C ) Colimit (/) ) (/) ) = ( ( ( oppCat ` C ) Colimit (/) ) ` <. (/) , (/) >. ) with typecode |-
53 eqid oppCat oppCat C = oppCat oppCat C
54 df-ov Could not format ( (/) oppFunc (/) ) = ( oppFunc ` <. (/) , (/) >. ) : No typesetting found for |- ( (/) oppFunc (/) ) = ( oppFunc ` <. (/) , (/) >. ) with typecode |-
55 fvexd C Cat oppCat C V
56 53 25 54 55 38 cmddu Could not format ( C e. Cat -> ( ( ( oppCat ` C ) Colimit (/) ) ` <. (/) , (/) >. ) = ( ( ( oppCat ` ( oppCat ` C ) ) Limit ( oppCat ` (/) ) ) ` ( (/) oppFunc (/) ) ) ) : No typesetting found for |- ( C e. Cat -> ( ( ( oppCat ` C ) Colimit (/) ) ` <. (/) , (/) >. ) = ( ( ( oppCat ` ( oppCat ` C ) ) Limit ( oppCat ` (/) ) ) ` ( (/) oppFunc (/) ) ) ) with typecode |-
57 52 56 eqtrid Could not format ( C e. Cat -> ( (/) ( ( oppCat ` C ) Colimit (/) ) (/) ) = ( ( ( oppCat ` ( oppCat ` C ) ) Limit ( oppCat ` (/) ) ) ` ( (/) oppFunc (/) ) ) ) : No typesetting found for |- ( C e. Cat -> ( (/) ( ( oppCat ` C ) Colimit (/) ) (/) ) = ( ( ( oppCat ` ( oppCat ` C ) ) Limit ( oppCat ` (/) ) ) ` ( (/) oppFunc (/) ) ) ) with typecode |-
58 51 57 eqtr4d Could not format ( C e. Cat -> ( ( C Limit (/) ) ` <. (/) , (/) >. ) = ( (/) ( ( oppCat ` C ) Colimit (/) ) (/) ) ) : No typesetting found for |- ( C e. Cat -> ( ( C Limit (/) ) ` <. (/) , (/) >. ) = ( (/) ( ( oppCat ` C ) Colimit (/) ) (/) ) ) with typecode |-
59 58 dmeqd Could not format ( C e. Cat -> dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) = dom ( (/) ( ( oppCat ` C ) Colimit (/) ) (/) ) ) : No typesetting found for |- ( C e. Cat -> dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) = dom ( (/) ( ( oppCat ` C ) Colimit (/) ) (/) ) ) with typecode |-
60 11 14 59 3eqtr4a Could not format ( C e. Cat -> ( TermO ` C ) = dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) ) : No typesetting found for |- ( C e. Cat -> ( TermO ` C ) = dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) ) with typecode |-
61 60 eleq2d Could not format ( C e. Cat -> ( x e. ( TermO ` C ) <-> x e. dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) ) ) : No typesetting found for |- ( C e. Cat -> ( x e. ( TermO ` C ) <-> x e. dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) ) ) with typecode |-
62 1 10 61 pm5.21nii Could not format ( x e. ( TermO ` C ) <-> x e. dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) ) : No typesetting found for |- ( x e. ( TermO ` C ) <-> x e. dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) ) with typecode |-
63 62 eqriv Could not format ( TermO ` C ) = dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) : No typesetting found for |- ( TermO ` C ) = dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) with typecode |-
64 df-ov Could not format ( (/) ( C Limit (/) ) (/) ) = ( ( C Limit (/) ) ` <. (/) , (/) >. ) : No typesetting found for |- ( (/) ( C Limit (/) ) (/) ) = ( ( C Limit (/) ) ` <. (/) , (/) >. ) with typecode |-
65 64 dmeqi Could not format dom ( (/) ( C Limit (/) ) (/) ) = dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) : No typesetting found for |- dom ( (/) ( C Limit (/) ) (/) ) = dom ( ( C Limit (/) ) ` <. (/) , (/) >. ) with typecode |-
66 63 65 eqtr4i Could not format ( TermO ` C ) = dom ( (/) ( C Limit (/) ) (/) ) : No typesetting found for |- ( TermO ` C ) = dom ( (/) ( C Limit (/) ) (/) ) with typecode |-