Metamath Proof Explorer


Theorem tfindsg2

Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal suc B instead of zero. (Contributed by NM, 5-Jan-2005) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses tfindsg2.1 x=sucBφψ
tfindsg2.2 x=yφχ
tfindsg2.3 x=sucyφθ
tfindsg2.4 x=Aφτ
tfindsg2.5 BOnψ
tfindsg2.6 yOnByχθ
tfindsg2.7 LimxBxyxByχφ
Assertion tfindsg2 AOnBAτ

Proof

Step Hyp Ref Expression
1 tfindsg2.1 x=sucBφψ
2 tfindsg2.2 x=yφχ
3 tfindsg2.3 x=sucyφθ
4 tfindsg2.4 x=Aφτ
5 tfindsg2.5 BOnψ
6 tfindsg2.6 yOnByχθ
7 tfindsg2.7 LimxBxyxByχφ
8 onelon AOnBABOn
9 onsucb BOnsucBOn
10 8 9 sylib AOnBAsucBOn
11 eloni AOnOrdA
12 ordsucss OrdABAsucBA
13 11 12 syl AOnBAsucBA
14 13 imp AOnBAsucBA
15 9 5 sylbir sucBOnψ
16 eloni yOnOrdy
17 ordelsuc BOnOrdyBysucBy
18 16 17 sylan2 BOnyOnBysucBy
19 18 ancoms yOnBOnBysucBy
20 6 ex yOnByχθ
21 20 adantr yOnBOnByχθ
22 19 21 sylbird yOnBOnsucByχθ
23 9 22 sylan2br yOnsucBOnsucByχθ
24 23 imp yOnsucBOnsucByχθ
25 7 ex LimxBxyxByχφ
26 25 adantr LimxBOnBxyxByχφ
27 vex xV
28 limelon xVLimxxOn
29 27 28 mpan LimxxOn
30 eloni xOnOrdx
31 ordelsuc BOnOrdxBxsucBx
32 30 31 sylan2 BOnxOnBxsucBx
33 onelon xOnyxyOn
34 33 16 syl xOnyxOrdy
35 34 17 sylan2 BOnxOnyxBysucBy
36 35 anassrs BOnxOnyxBysucBy
37 36 imbi1d BOnxOnyxByχsucByχ
38 37 ralbidva BOnxOnyxByχyxsucByχ
39 38 imbi1d BOnxOnyxByχφyxsucByχφ
40 32 39 imbi12d BOnxOnBxyxByχφsucBxyxsucByχφ
41 29 40 sylan2 BOnLimxBxyxByχφsucBxyxsucByχφ
42 41 ancoms LimxBOnBxyxByχφsucBxyxsucByχφ
43 26 42 mpbid LimxBOnsucBxyxsucByχφ
44 9 43 sylan2br LimxsucBOnsucBxyxsucByχφ
45 44 imp LimxsucBOnsucBxyxsucByχφ
46 1 2 3 4 15 24 45 tfindsg AOnsucBOnsucBAτ
47 46 expl AOnsucBOnsucBAτ
48 47 adantr AOnBAsucBOnsucBAτ
49 10 14 48 mp2and AOnBAτ