Metamath Proof Explorer


Theorem tgbtwntriv1

Description: Betweenness always holds for the first endpoint. Theorem 3.3 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgbtwntriv2.1 φAP
tgbtwntriv2.2 φBP
Assertion tgbtwntriv1 φAAIB

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgbtwntriv2.1 φAP
6 tgbtwntriv2.2 φBP
7 1 2 3 4 6 5 tgbtwntriv2 φABIA
8 1 2 3 4 6 5 5 7 tgbtwncom φAAIB