| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tkgeom.p |  | 
						
							| 2 |  | tkgeom.d |  | 
						
							| 3 |  | tkgeom.i |  | 
						
							| 4 |  | tkgeom.g |  | 
						
							| 5 |  | tgcgrextend.a |  | 
						
							| 6 |  | tgcgrextend.b |  | 
						
							| 7 |  | tgcgrextend.c |  | 
						
							| 8 |  | tgcgrextend.d |  | 
						
							| 9 |  | tgcgrextend.e |  | 
						
							| 10 |  | tgcgrextend.f |  | 
						
							| 11 |  | tgcgrextend.1 |  | 
						
							| 12 |  | tgcgrextend.2 |  | 
						
							| 13 |  | tgcgrextend.3 |  | 
						
							| 14 |  | tgcgrextend.4 |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 16 | oveq1d |  | 
						
							| 18 | 4 | adantr |  | 
						
							| 19 | 5 | adantr |  | 
						
							| 20 | 6 | adantr |  | 
						
							| 21 | 8 | adantr |  | 
						
							| 22 | 9 | adantr |  | 
						
							| 23 | 13 | adantr |  | 
						
							| 24 | 1 2 3 18 19 20 21 22 23 16 | tgcgreq |  | 
						
							| 25 | 24 | oveq1d |  | 
						
							| 26 | 15 17 25 | 3eqtr4d |  | 
						
							| 27 | 4 | adantr |  | 
						
							| 28 | 7 | adantr |  | 
						
							| 29 | 5 | adantr |  | 
						
							| 30 | 10 | adantr |  | 
						
							| 31 | 8 | adantr |  | 
						
							| 32 | 6 | adantr |  | 
						
							| 33 | 9 | adantr |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 11 | adantr |  | 
						
							| 36 | 12 | adantr |  | 
						
							| 37 | 13 | adantr |  | 
						
							| 38 | 14 | adantr |  | 
						
							| 39 | 1 2 3 27 29 31 | tgcgrtriv |  | 
						
							| 40 | 1 2 3 27 29 32 31 33 37 | tgcgrcomlr |  | 
						
							| 41 | 1 2 3 27 29 32 28 31 33 30 29 31 34 35 36 37 38 39 40 | axtg5seg |  | 
						
							| 42 | 1 2 3 27 28 29 30 31 41 | tgcgrcomlr |  | 
						
							| 43 | 26 42 | pm2.61dane |  |