Metamath Proof Explorer


Theorem tgcolg

Description: We choose the notation ( Z e. ( X L Y ) \/ X = Y ) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglngval.p P=BaseG
tglngval.l L=Line𝒢G
tglngval.i I=ItvG
tglngval.g φG𝒢Tarski
tglngval.x φXP
tglngval.y φYP
tgcolg.z φZP
Assertion tgcolg φZXLYX=YZXIYXZIYYXIZ

Proof

Step Hyp Ref Expression
1 tglngval.p P=BaseG
2 tglngval.l L=Line𝒢G
3 tglngval.i I=ItvG
4 tglngval.g φG𝒢Tarski
5 tglngval.x φXP
6 tglngval.y φYP
7 tgcolg.z φZP
8 animorr φX=YZXLYX=Y
9 eqid distG=distG
10 4 adantr φX=YG𝒢Tarski
11 7 adantr φX=YZP
12 5 adantr φX=YXP
13 1 9 3 10 11 12 tgbtwntriv2 φX=YXZIX
14 simpr φX=YX=Y
15 14 oveq2d φX=YZIX=ZIY
16 13 15 eleqtrd φX=YXZIY
17 16 3mix2d φX=YZXIYXZIYYXIZ
18 8 17 2thd φX=YZXLYX=YZXIYXZIYYXIZ
19 simpr φXYXY
20 19 neneqd φXY¬X=Y
21 biorf ¬X=YZXLYX=YZXLY
22 20 21 syl φXYZXLYX=YZXLY
23 orcom X=YZXLYZXLYX=Y
24 22 23 bitrdi φXYZXLYZXLYX=Y
25 4 adantr φXYG𝒢Tarski
26 5 adantr φXYXP
27 6 adantr φXYYP
28 7 adantr φXYZP
29 1 2 3 25 26 27 19 28 tgellng φXYZXLYZXIYXZIYYXIZ
30 24 29 bitr3d φXYZXLYX=YZXIYXZIYYXIZ
31 18 30 pm2.61dane φZXLYX=YZXIYXZIYYXIZ