Metamath Proof Explorer


Theorem tghilberti1

Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p B=BaseG
tglineelsb2.i I=ItvG
tglineelsb2.l L=Line𝒢G
tglineelsb2.g φG𝒢Tarski
tglineelsb2.1 φPB
tglineelsb2.2 φQB
tglineelsb2.4 φPQ
Assertion tghilberti1 φxranLPxQx

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B=BaseG
2 tglineelsb2.i I=ItvG
3 tglineelsb2.l L=Line𝒢G
4 tglineelsb2.g φG𝒢Tarski
5 tglineelsb2.1 φPB
6 tglineelsb2.2 φQB
7 tglineelsb2.4 φPQ
8 1 2 3 4 5 6 7 tgelrnln φPLQranL
9 1 2 3 4 5 6 7 tglinerflx1 φPPLQ
10 1 2 3 4 5 6 7 tglinerflx2 φQPLQ
11 eleq2 x=PLQPxPPLQ
12 eleq2 x=PLQQxQPLQ
13 11 12 anbi12d x=PLQPxQxPPLQQPLQ
14 13 rspcev PLQranLPPLQQPLQxranLPxQx
15 8 9 10 14 syl12anc φxranLPxQx