Metamath Proof Explorer


Theorem tgisline

Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p B=BaseG
tglineelsb2.i I=ItvG
tglineelsb2.l L=Line𝒢G
tglineelsb2.g φG𝒢Tarski
tgisline.1 φAranL
Assertion tgisline φxByBA=xLyxy

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B=BaseG
2 tglineelsb2.i I=ItvG
3 tglineelsb2.l L=Line𝒢G
4 tglineelsb2.g φG𝒢Tarski
5 tgisline.1 φAranL
6 4 adantr φxByBxG𝒢Tarski
7 simprl φxByBxxB
8 simprr φxByBxyBx
9 8 eldifad φxByBxyB
10 eldifsn yBxyByx
11 8 10 sylib φxByBxyByx
12 11 simprd φxByBxyx
13 12 necomd φxByBxxy
14 1 3 2 6 7 9 13 tglngval φxByBxxLy=zB|zxIyxzIyyxIz
15 14 13 jca φxByBxxLy=zB|zxIyxzIyyxIzxy
16 15 ralrimivva φxByBxxLy=zB|zxIyxzIyyxIzxy
17 1 3 2 tglng G𝒢TarskiL=xB,yBxzB|zxIyxzIyyxIz
18 4 17 syl φL=xB,yBxzB|zxIyxzIyyxIz
19 18 rneqd φranL=ranxB,yBxzB|zxIyxzIyyxIz
20 5 19 eleqtrd φAranxB,yBxzB|zxIyxzIyyxIz
21 eqid xB,yBxzB|zxIyxzIyyxIz=xB,yBxzB|zxIyxzIyyxIz
22 21 elrnmpog AranLAranxB,yBxzB|zxIyxzIyyxIzxByBxA=zB|zxIyxzIyyxIz
23 5 22 syl φAranxB,yBxzB|zxIyxzIyyxIzxByBxA=zB|zxIyxzIyyxIz
24 20 23 mpbid φxByBxA=zB|zxIyxzIyyxIz
25 16 24 r19.29d2r φxByBxxLy=zB|zxIyxzIyyxIzxyA=zB|zxIyxzIyyxIz
26 difss BxB
27 simpr xLy=zB|zxIyxzIyyxIzxyA=zB|zxIyxzIyyxIzA=zB|zxIyxzIyyxIz
28 simpll xLy=zB|zxIyxzIyyxIzxyA=zB|zxIyxzIyyxIzxLy=zB|zxIyxzIyyxIz
29 27 28 eqtr4d xLy=zB|zxIyxzIyyxIzxyA=zB|zxIyxzIyyxIzA=xLy
30 simplr xLy=zB|zxIyxzIyyxIzxyA=zB|zxIyxzIyyxIzxy
31 29 30 jca xLy=zB|zxIyxzIyyxIzxyA=zB|zxIyxzIyyxIzA=xLyxy
32 31 reximi yBxxLy=zB|zxIyxzIyyxIzxyA=zB|zxIyxzIyyxIzyBxA=xLyxy
33 ssrexv BxByBxA=xLyxyyBA=xLyxy
34 26 32 33 mpsyl yBxxLy=zB|zxIyxzIyyxIzxyA=zB|zxIyxzIyyxIzyBA=xLyxy
35 34 reximi xByBxxLy=zB|zxIyxzIyyxIzxyA=zB|zxIyxzIyyxIzxByBA=xLyxy
36 25 35 syl φxByBA=xLyxy