Description: If A is a line containing two distinct points P and Q , then A is the line through P and Q . Theorem 6.18 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 25-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tglineelsb2.p | |
|
tglineelsb2.i | |
||
tglineelsb2.l | |
||
tglineelsb2.g | |
||
tglineelsb2.1 | |
||
tglineelsb2.2 | |
||
tglineelsb2.4 | |
||
tglinethru.0 | |
||
tglinethru.1 | |
||
tglinethru.2 | |
||
tglinethru.3 | |
||
Assertion | tglinethru | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | |
|
2 | tglineelsb2.i | |
|
3 | tglineelsb2.l | |
|
4 | tglineelsb2.g | |
|
5 | tglineelsb2.1 | |
|
6 | tglineelsb2.2 | |
|
7 | tglineelsb2.4 | |
|
8 | tglinethru.0 | |
|
9 | tglinethru.1 | |
|
10 | tglinethru.2 | |
|
11 | tglinethru.3 | |
|
12 | 4 | ad4antr | |
13 | simp-4r | |
|
14 | simpllr | |
|
15 | simplrr | |
|
16 | 6 | ad4antr | |
17 | 8 | ad4antr | |
18 | 17 | necomd | |
19 | simpr | |
|
20 | 18 19 | neeqtrd | |
21 | 11 | ad4antr | |
22 | simplrl | |
|
23 | 21 22 | eleqtrd | |
24 | 1 2 3 12 13 14 15 16 20 23 | tglineelsb2 | |
25 | 19 | oveq1d | |
26 | 24 22 25 | 3eqtr4d | |
27 | simplrl | |
|
28 | 4 | ad4antr | |
29 | simp-4r | |
|
30 | simpllr | |
|
31 | simplrr | |
|
32 | 5 | ad4antr | |
33 | simpr | |
|
34 | 10 | ad4antr | |
35 | 34 27 | eleqtrd | |
36 | 1 2 3 28 29 30 31 32 33 35 | tglineelsb2 | |
37 | 33 | necomd | |
38 | 1 2 3 28 29 32 37 | tglinecom | |
39 | 27 36 38 | 3eqtrd | |
40 | 6 | ad4antr | |
41 | 8 | ad4antr | |
42 | 41 | necomd | |
43 | 11 | ad4antr | |
44 | 43 39 | eleqtrd | |
45 | 1 2 3 28 32 29 33 40 42 44 | tglineelsb2 | |
46 | 39 45 | eqtrd | |
47 | 26 46 | pm2.61dane | |
48 | 1 2 3 4 9 | tgisline | |
49 | 47 48 | r19.29vva | |