Metamath Proof Explorer


Theorem tglinethru

Description: If A is a line containing two distinct points P and Q , then A is the line through P and Q . Theorem 6.18 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p B=BaseG
tglineelsb2.i I=ItvG
tglineelsb2.l L=Line𝒢G
tglineelsb2.g φG𝒢Tarski
tglineelsb2.1 φPB
tglineelsb2.2 φQB
tglineelsb2.4 φPQ
tglinethru.0 φPQ
tglinethru.1 φAranL
tglinethru.2 φPA
tglinethru.3 φQA
Assertion tglinethru φA=PLQ

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B=BaseG
2 tglineelsb2.i I=ItvG
3 tglineelsb2.l L=Line𝒢G
4 tglineelsb2.g φG𝒢Tarski
5 tglineelsb2.1 φPB
6 tglineelsb2.2 φQB
7 tglineelsb2.4 φPQ
8 tglinethru.0 φPQ
9 tglinethru.1 φAranL
10 tglinethru.2 φPA
11 tglinethru.3 φQA
12 4 ad4antr φxByBA=xLyxyP=xG𝒢Tarski
13 simp-4r φxByBA=xLyxyP=xxB
14 simpllr φxByBA=xLyxyP=xyB
15 simplrr φxByBA=xLyxyP=xxy
16 6 ad4antr φxByBA=xLyxyP=xQB
17 8 ad4antr φxByBA=xLyxyP=xPQ
18 17 necomd φxByBA=xLyxyP=xQP
19 simpr φxByBA=xLyxyP=xP=x
20 18 19 neeqtrd φxByBA=xLyxyP=xQx
21 11 ad4antr φxByBA=xLyxyP=xQA
22 simplrl φxByBA=xLyxyP=xA=xLy
23 21 22 eleqtrd φxByBA=xLyxyP=xQxLy
24 1 2 3 12 13 14 15 16 20 23 tglineelsb2 φxByBA=xLyxyP=xxLy=xLQ
25 19 oveq1d φxByBA=xLyxyP=xPLQ=xLQ
26 24 22 25 3eqtr4d φxByBA=xLyxyP=xA=PLQ
27 simplrl φxByBA=xLyxyPxA=xLy
28 4 ad4antr φxByBA=xLyxyPxG𝒢Tarski
29 simp-4r φxByBA=xLyxyPxxB
30 simpllr φxByBA=xLyxyPxyB
31 simplrr φxByBA=xLyxyPxxy
32 5 ad4antr φxByBA=xLyxyPxPB
33 simpr φxByBA=xLyxyPxPx
34 10 ad4antr φxByBA=xLyxyPxPA
35 34 27 eleqtrd φxByBA=xLyxyPxPxLy
36 1 2 3 28 29 30 31 32 33 35 tglineelsb2 φxByBA=xLyxyPxxLy=xLP
37 33 necomd φxByBA=xLyxyPxxP
38 1 2 3 28 29 32 37 tglinecom φxByBA=xLyxyPxxLP=PLx
39 27 36 38 3eqtrd φxByBA=xLyxyPxA=PLx
40 6 ad4antr φxByBA=xLyxyPxQB
41 8 ad4antr φxByBA=xLyxyPxPQ
42 41 necomd φxByBA=xLyxyPxQP
43 11 ad4antr φxByBA=xLyxyPxQA
44 43 39 eleqtrd φxByBA=xLyxyPxQPLx
45 1 2 3 28 32 29 33 40 42 44 tglineelsb2 φxByBA=xLyxyPxPLx=PLQ
46 39 45 eqtrd φxByBA=xLyxyPxA=PLQ
47 26 46 pm2.61dane φxByBA=xLyxyA=PLQ
48 1 2 3 4 9 tgisline φxByBA=xLyxy
49 47 48 r19.29vva φA=PLQ