Metamath Proof Explorer


Theorem tgoldbachlt

Description: The ternary Goldbach conjecture is valid for small odd numbers (i.e. for all odd numbers less than a fixed big m greater than 8 x 10^30). This is verified for m = 8.875694 x 10^30 by Helfgott, see tgblthelfgott . (Contributed by AV, 4-Aug-2020) (Revised by AV, 9-Sep-2021)

Ref Expression
Assertion tgoldbachlt m 8 10 30 < m n Odd 7 < n n < m n GoldbachOdd

Proof

Step Hyp Ref Expression
1 8nn0 8 0
2 8nn 8
3 1 2 decnncl 88
4 10nn 10
5 2nn0 2 0
6 9nn0 9 0
7 5 6 deccl 29 0
8 nnexpcl 10 29 0 10 29
9 4 7 8 mp2an 10 29
10 3 9 nnmulcli 88 10 29
11 id 88 10 29 88 10 29
12 breq2 m = 88 10 29 8 10 30 < m 8 10 30 < 88 10 29
13 breq2 m = 88 10 29 n < m n < 88 10 29
14 13 anbi2d m = 88 10 29 7 < n n < m 7 < n n < 88 10 29
15 14 imbi1d m = 88 10 29 7 < n n < m n GoldbachOdd 7 < n n < 88 10 29 n GoldbachOdd
16 15 ralbidv m = 88 10 29 n Odd 7 < n n < m n GoldbachOdd n Odd 7 < n n < 88 10 29 n GoldbachOdd
17 12 16 anbi12d m = 88 10 29 8 10 30 < m n Odd 7 < n n < m n GoldbachOdd 8 10 30 < 88 10 29 n Odd 7 < n n < 88 10 29 n GoldbachOdd
18 17 adantl 88 10 29 m = 88 10 29 8 10 30 < m n Odd 7 < n n < m n GoldbachOdd 8 10 30 < 88 10 29 n Odd 7 < n n < 88 10 29 n GoldbachOdd
19 simplr 88 10 29 n Odd 7 < n n < 88 10 29 n Odd
20 simprl 88 10 29 n Odd 7 < n n < 88 10 29 7 < n
21 simprr 88 10 29 n Odd 7 < n n < 88 10 29 n < 88 10 29
22 tgblthelfgott n Odd 7 < n n < 88 10 29 n GoldbachOdd
23 19 20 21 22 syl3anc 88 10 29 n Odd 7 < n n < 88 10 29 n GoldbachOdd
24 23 ex 88 10 29 n Odd 7 < n n < 88 10 29 n GoldbachOdd
25 24 ralrimiva 88 10 29 n Odd 7 < n n < 88 10 29 n GoldbachOdd
26 2 9 nnmulcli 8 10 29
27 26 nngt0i 0 < 8 10 29
28 26 nnrei 8 10 29
29 3nn0 3 0
30 0nn0 0 0
31 29 30 deccl 30 0
32 nnexpcl 10 30 0 10 30
33 4 31 32 mp2an 10 30
34 2 33 nnmulcli 8 10 30
35 34 nnrei 8 10 30
36 28 35 ltaddposi 0 < 8 10 29 8 10 30 < 8 10 30 + 8 10 29
37 27 36 mpbi 8 10 30 < 8 10 30 + 8 10 29
38 dfdec10 88 = 10 8 + 8
39 38 oveq1i 88 10 29 = 10 8 + 8 10 29
40 4 2 nnmulcli 10 8
41 40 nncni 10 8
42 8cn 8
43 9 nncni 10 29
44 41 42 43 adddiri 10 8 + 8 10 29 = 10 8 10 29 + 8 10 29
45 41 43 mulcomi 10 8 10 29 = 10 29 10 8
46 4 nncni 10
47 43 46 42 mulassi 10 29 10 8 = 10 29 10 8
48 nncn 10 10
49 7 a1i 10 29 0
50 48 49 expp1d 10 10 29 + 1 = 10 29 10
51 4 50 ax-mp 10 29 + 1 = 10 29 10
52 51 eqcomi 10 29 10 = 10 29 + 1
53 52 oveq1i 10 29 10 8 = 10 29 + 1 8
54 45 47 53 3eqtr2i 10 8 10 29 = 10 29 + 1 8
55 54 oveq1i 10 8 10 29 + 8 10 29 = 10 29 + 1 8 + 8 10 29
56 2p1e3 2 + 1 = 3
57 eqid 29 = 29
58 5 56 57 decsucc 29 + 1 = 30
59 58 oveq2i 10 29 + 1 = 10 30
60 59 oveq1i 10 29 + 1 8 = 10 30 8
61 60 oveq1i 10 29 + 1 8 + 8 10 29 = 10 30 8 + 8 10 29
62 33 nncni 10 30
63 mulcom 10 30 8 10 30 8 = 8 10 30
64 63 oveq1d 10 30 8 10 30 8 + 8 10 29 = 8 10 30 + 8 10 29
65 62 42 64 mp2an 10 30 8 + 8 10 29 = 8 10 30 + 8 10 29
66 55 61 65 3eqtri 10 8 10 29 + 8 10 29 = 8 10 30 + 8 10 29
67 39 44 66 3eqtri 88 10 29 = 8 10 30 + 8 10 29
68 37 67 breqtrri 8 10 30 < 88 10 29
69 25 68 jctil 88 10 29 8 10 30 < 88 10 29 n Odd 7 < n n < 88 10 29 n GoldbachOdd
70 11 18 69 rspcedvd 88 10 29 m 8 10 30 < m n Odd 7 < n n < m n GoldbachOdd
71 10 70 ax-mp m 8 10 30 < m n Odd 7 < n n < m n GoldbachOdd