Metamath Proof Explorer


Theorem tgpt1

Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypothesis tgpt1.j J=TopOpenG
Assertion tgpt1 GTopGrpJHausJFre

Proof

Step Hyp Ref Expression
1 tgpt1.j J=TopOpenG
2 haust1 JHausJFre
3 tgpgrp GTopGrpGGrp
4 eqid BaseG=BaseG
5 eqid 0G=0G
6 4 5 grpidcl GGrp0GBaseG
7 3 6 syl GTopGrp0GBaseG
8 1 4 tgptopon GTopGrpJTopOnBaseG
9 toponuni JTopOnBaseGBaseG=J
10 8 9 syl GTopGrpBaseG=J
11 7 10 eleqtrd GTopGrp0GJ
12 eqid J=J
13 12 t1sncld JFre0GJ0GClsdJ
14 13 expcom 0GJJFre0GClsdJ
15 11 14 syl GTopGrpJFre0GClsdJ
16 5 1 tgphaus GTopGrpJHaus0GClsdJ
17 15 16 sylibrd GTopGrpJFreJHaus
18 2 17 impbid2 GTopGrpJHausJFre