Metamath Proof Explorer


Theorem tgval

Description: The topology generated by a basis. See also tgval2 and tgval3 . (Contributed by NM, 16-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)

Ref Expression
Assertion tgval BVtopGenB=x|xB𝒫x

Proof

Step Hyp Ref Expression
1 df-topgen topGen=yVx|xy𝒫x
2 ineq1 y=By𝒫x=B𝒫x
3 2 unieqd y=By𝒫x=B𝒫x
4 3 sseq2d y=Bxy𝒫xxB𝒫x
5 4 abbidv y=Bx|xy𝒫x=x|xB𝒫x
6 elex BVBV
7 uniexg BVBV
8 abssexg BVx|xBx𝒫xV
9 uniin B𝒫xB𝒫x
10 sstr xB𝒫xB𝒫xB𝒫xxB𝒫x
11 9 10 mpan2 xB𝒫xxB𝒫x
12 ssin xBx𝒫xxB𝒫x
13 11 12 sylibr xB𝒫xxBx𝒫x
14 13 ss2abi x|xB𝒫xx|xBx𝒫x
15 ssexg x|xB𝒫xx|xBx𝒫xx|xBx𝒫xVx|xB𝒫xV
16 14 15 mpan x|xBx𝒫xVx|xB𝒫xV
17 7 8 16 3syl BVx|xB𝒫xV
18 1 5 6 17 fvmptd3 BVtopGenB=x|xB𝒫x