Metamath Proof Explorer


Theorem tgval2

Description: Definition of a topology generated by a basis in Munkres p. 78. Later we show (in tgcl ) that ( topGenB ) is indeed a topology (on U. B , see unitg ). See also tgval and tgval3 . (Contributed by NM, 15-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)

Ref Expression
Assertion tgval2 BVtopGenB=x|xByxzByzzx

Proof

Step Hyp Ref Expression
1 tgval BVtopGenB=x|xB𝒫x
2 inss1 B𝒫xB
3 2 unissi B𝒫xB
4 3 sseli yB𝒫xyB
5 4 pm4.71ri yB𝒫xyByB𝒫x
6 5 ralbii yxyB𝒫xyxyByB𝒫x
7 r19.26 yxyByB𝒫xyxyByxyB𝒫x
8 6 7 bitri yxyB𝒫xyxyByxyB𝒫x
9 dfss3 xB𝒫xyxyB𝒫x
10 dfss3 xByxyB
11 elin zB𝒫xzBz𝒫x
12 11 anbi2i yzzB𝒫xyzzBz𝒫x
13 an12 yzzBz𝒫xzByzz𝒫x
14 12 13 bitri yzzB𝒫xzByzz𝒫x
15 14 exbii zyzzB𝒫xzzByzz𝒫x
16 eluni yB𝒫xzyzzB𝒫x
17 df-rex zByzz𝒫xzzByzz𝒫x
18 15 16 17 3bitr4i yB𝒫xzByzz𝒫x
19 velpw z𝒫xzx
20 19 anbi2i yzz𝒫xyzzx
21 20 rexbii zByzz𝒫xzByzzx
22 18 21 bitr2i zByzzxyB𝒫x
23 22 ralbii yxzByzzxyxyB𝒫x
24 10 23 anbi12i xByxzByzzxyxyByxyB𝒫x
25 8 9 24 3bitr4i xB𝒫xxByxzByzzx
26 25 abbii x|xB𝒫x=x|xByxzByzzx
27 1 26 eqtrdi BVtopGenB=x|xByxzByzzx