Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015) (Proof shortened by AV, 11-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | thlval.k | |
|
thlbas.c | |
||
thlle.i | |
||
thlle.l | |
||
Assertion | thlle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlval.k | |
|
2 | thlbas.c | |
|
3 | thlle.i | |
|
4 | thlle.l | |
|
5 | pleid | |
|
6 | plendxnocndx | |
|
7 | 5 6 | setsnid | |
8 | 4 7 | eqtri | |
9 | eqid | |
|
10 | 1 2 3 9 | thlval | |
11 | 10 | fveq2d | |
12 | 8 11 | eqtr4id | |
13 | 5 | str0 | |
14 | 2 | fvexi | |
15 | 3 | ipolerval | |
16 | 14 15 | ax-mp | |
17 | 4 16 | eqtr4i | |
18 | opabn0 | |
|
19 | vex | |
|
20 | vex | |
|
21 | 19 20 | prss | |
22 | elfvex | |
|
23 | 22 2 | eleq2s | |
24 | 23 | ad2antrr | |
25 | 21 24 | sylanbr | |
26 | 25 | exlimivv | |
27 | 18 26 | sylbi | |
28 | 27 | necon1bi | |
29 | 17 28 | eqtrid | |
30 | fvprc | |
|
31 | 1 30 | eqtrid | |
32 | 31 | fveq2d | |
33 | 13 29 32 | 3eqtr4a | |
34 | 12 33 | pm2.61i | |