Metamath Proof Explorer


Theorem thlle

Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015) (Proof shortened by AV, 11-Nov-2024)

Ref Expression
Hypotheses thlval.k K=toHLW
thlbas.c C=ClSubSpW
thlle.i I=toIncC
thlle.l ˙=I
Assertion thlle ˙=K

Proof

Step Hyp Ref Expression
1 thlval.k K=toHLW
2 thlbas.c C=ClSubSpW
3 thlle.i I=toIncC
4 thlle.l ˙=I
5 pleid le=Slotndx
6 plendxnocndx ndxocndx
7 5 6 setsnid I=IsSetocndxocvW
8 4 7 eqtri ˙=IsSetocndxocvW
9 eqid ocvW=ocvW
10 1 2 3 9 thlval WVK=IsSetocndxocvW
11 10 fveq2d WVK=IsSetocndxocvW
12 8 11 eqtr4id WV˙=K
13 5 str0 =
14 2 fvexi CV
15 3 ipolerval CVxy|xyCxy=I
16 14 15 ax-mp xy|xyCxy=I
17 4 16 eqtr4i ˙=xy|xyCxy
18 opabn0 xy|xyCxyxyxyCxy
19 vex xV
20 vex yV
21 19 20 prss xCyCxyC
22 elfvex xClSubSpWWV
23 22 2 eleq2s xCWV
24 23 ad2antrr xCyCxyWV
25 21 24 sylanbr xyCxyWV
26 25 exlimivv xyxyCxyWV
27 18 26 sylbi xy|xyCxyWV
28 27 necon1bi ¬WVxy|xyCxy=
29 17 28 eqtrid ¬WV˙=
30 fvprc ¬WVtoHLW=
31 1 30 eqtrid ¬WVK=
32 31 fveq2d ¬WVK=
33 13 29 32 3eqtr4a ¬WV˙=K
34 12 33 pm2.61i ˙=K