| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thlval.k |
|
| 2 |
|
thlbas.c |
|
| 3 |
|
thlle.i |
|
| 4 |
|
thlle.l |
|
| 5 |
|
pleid |
|
| 6 |
|
10re |
|
| 7 |
|
1nn0 |
|
| 8 |
|
0nn0 |
|
| 9 |
|
1nn |
|
| 10 |
|
0lt1 |
|
| 11 |
7 8 9 10
|
declt |
|
| 12 |
6 11
|
ltneii |
|
| 13 |
|
plendx |
|
| 14 |
|
ocndx |
|
| 15 |
13 14
|
neeq12i |
|
| 16 |
12 15
|
mpbir |
|
| 17 |
5 16
|
setsnid |
|
| 18 |
4 17
|
eqtri |
|
| 19 |
|
eqid |
|
| 20 |
1 2 3 19
|
thlval |
|
| 21 |
20
|
fveq2d |
|
| 22 |
18 21
|
eqtr4id |
|
| 23 |
5
|
str0 |
|
| 24 |
2
|
fvexi |
|
| 25 |
3
|
ipolerval |
|
| 26 |
24 25
|
ax-mp |
|
| 27 |
4 26
|
eqtr4i |
|
| 28 |
|
opabn0 |
|
| 29 |
|
vex |
|
| 30 |
|
vex |
|
| 31 |
29 30
|
prss |
|
| 32 |
|
elfvex |
|
| 33 |
32 2
|
eleq2s |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
31 34
|
sylanbr |
|
| 36 |
35
|
exlimivv |
|
| 37 |
28 36
|
sylbi |
|
| 38 |
37
|
necon1bi |
|
| 39 |
27 38
|
eqtrid |
|
| 40 |
|
fvprc |
|
| 41 |
1 40
|
eqtrid |
|
| 42 |
41
|
fveq2d |
|
| 43 |
23 39 42
|
3eqtr4a |
|
| 44 |
22 43
|
pm2.61i |
|