Description: If a structure equipped with a norm is a normed group, the structure itself must be a group. (Contributed by AV, 15-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tngngp3.t | |
|
Assertion | tnggrpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngngp3.t | |
|
2 | eqid | |
|
3 | 1 2 | tngbas | |
4 | eqidd | |
|
5 | eqid | |
|
6 | 1 5 | tngplusg | |
7 | 6 | eqcomd | |
8 | 7 | oveqdr | |
9 | 3 4 8 | grppropd | |
10 | 9 | biimpd | |
11 | ngpgrp | |
|
12 | 10 11 | impel | |