Metamath Proof Explorer


Theorem tnggrpr

Description: If a structure equipped with a norm is a normed group, the structure itself must be a group. (Contributed by AV, 15-Oct-2021)

Ref Expression
Hypothesis tngngp3.t T=GtoNrmGrpN
Assertion tnggrpr NVTNrmGrpGGrp

Proof

Step Hyp Ref Expression
1 tngngp3.t T=GtoNrmGrpN
2 eqid BaseG=BaseG
3 1 2 tngbas NVBaseG=BaseT
4 eqidd NVBaseG=BaseG
5 eqid +G=+G
6 1 5 tngplusg NV+G=+T
7 6 eqcomd NV+T=+G
8 7 oveqdr NVxBaseGyBaseGx+Ty=x+Gy
9 3 4 8 grppropd NVTGrpGGrp
10 9 biimpd NVTGrpGGrp
11 ngpgrp TNrmGrpTGrp
12 10 11 impel NVTNrmGrpGGrp