Metamath Proof Explorer


Theorem tngtset

Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngtset.2 D = dist T
tngtset.3 J = MetOpen D
Assertion tngtset G V N W J = TopSet T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngtset.2 D = dist T
3 tngtset.3 J = MetOpen D
4 ovex G sSet dist ndx N - G V
5 fvex MetOpen N - G V
6 tsetid TopSet = Slot TopSet ndx
7 6 setsid G sSet dist ndx N - G V MetOpen N - G V MetOpen N - G = TopSet G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
8 4 5 7 mp2an MetOpen N - G = TopSet G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
9 eqid - G = - G
10 1 9 tngds N W N - G = dist T
11 2 10 eqtr4id N W D = N - G
12 11 adantl G V N W D = N - G
13 12 fveq2d G V N W MetOpen D = MetOpen N - G
14 3 13 eqtrid G V N W J = MetOpen N - G
15 eqid N - G = N - G
16 eqid MetOpen N - G = MetOpen N - G
17 1 9 15 16 tngval G V N W T = G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
18 17 fveq2d G V N W TopSet T = TopSet G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
19 8 14 18 3eqtr4a G V N W J = TopSet T