Metamath Proof Explorer


Theorem tngtset

Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses tngbas.t T=GtoNrmGrpN
tngtset.2 D=distT
tngtset.3 J=MetOpenD
Assertion tngtset GVNWJ=TopSetT

Proof

Step Hyp Ref Expression
1 tngbas.t T=GtoNrmGrpN
2 tngtset.2 D=distT
3 tngtset.3 J=MetOpenD
4 ovex GsSetdistndxN-GV
5 fvex MetOpenN-GV
6 tsetid TopSet=SlotTopSetndx
7 6 setsid GsSetdistndxN-GVMetOpenN-GVMetOpenN-G=TopSetGsSetdistndxN-GsSetTopSetndxMetOpenN-G
8 4 5 7 mp2an MetOpenN-G=TopSetGsSetdistndxN-GsSetTopSetndxMetOpenN-G
9 eqid -G=-G
10 1 9 tngds NWN-G=distT
11 2 10 eqtr4id NWD=N-G
12 11 adantl GVNWD=N-G
13 12 fveq2d GVNWMetOpenD=MetOpenN-G
14 3 13 eqtrid GVNWJ=MetOpenN-G
15 eqid N-G=N-G
16 eqid MetOpenN-G=MetOpenN-G
17 1 9 15 16 tngval GVNWT=GsSetdistndxN-GsSetTopSetndxMetOpenN-G
18 17 fveq2d GVNWTopSetT=TopSetGsSetdistndxN-GsSetTopSetndxMetOpenN-G
19 8 14 18 3eqtr4a GVNWJ=TopSetT