Metamath Proof Explorer


Theorem toplly

Description: A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion toplly Locally Top = Top

Proof

Step Hyp Ref Expression
1 llytop jLocally Top jTop
2 1 ssriv Locally Top Top
3 resttop jTopxjj𝑡xTop
4 3 adantl jTopxjj𝑡xTop
5 ssidd TopTop
6 4 5 restlly TopLocally Top
7 6 mptru TopLocally Top
8 2 7 eqssi Locally Top = Top