Metamath Proof Explorer


Theorem tpossym

Description: Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion tpossym FFnA×AtposF=FxAyAxFy=yFx

Proof

Step Hyp Ref Expression
1 tposfn FFnA×AtposFFnA×A
2 eqfnov2 tposFFnA×AFFnA×AtposF=FxAyAxtposFy=xFy
3 1 2 mpancom FFnA×AtposF=FxAyAxtposFy=xFy
4 eqcom xtposFy=xFyxFy=xtposFy
5 ovtpos xtposFy=yFx
6 5 eqeq2i xFy=xtposFyxFy=yFx
7 4 6 bitri xtposFy=xFyxFy=yFx
8 7 2ralbii xAyAxtposFy=xFyxAyAxFy=yFx
9 3 8 bitrdi FFnA×AtposF=FxAyAxFy=yFx