Metamath Proof Explorer


Theorem tpssg

Description: An ordered triplet of elements of a class is a subset of the class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Assertion tpssg A V B W C X A D B D C D A B C D

Proof

Step Hyp Ref Expression
1 df-3an A D B D C D A D B D C D
2 prssg A V B W A D B D A B D
3 snssg C X C D C D
4 2 3 bi2anan9 A V B W C X A D B D C D A B D C D
5 unss A B D C D A B C D
6 df-tp A B C = A B C
7 6 sseq1i A B C D A B C D
8 5 7 bitr4i A B D C D A B C D
9 4 8 bitrdi A V B W C X A D B D C D A B C D
10 1 9 bitrid A V B W C X A D B D C D A B C D
11 10 3impa A V B W C X A D B D C D A B C D