Metamath Proof Explorer


Theorem tr3dom

Description: An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023)

Ref Expression
Assertion tr3dom ABC3𝑜

Proof

Step Hyp Ref Expression
1 df-tp ABC=ABC
2 prex ABV
3 snex CV
4 undjudom ABVCVABCAB⊔︀C
5 2 3 4 mp2an ABCAB⊔︀C
6 pr2dom AB2𝑜
7 djudom1 AB2𝑜CVAB⊔︀C2𝑜⊔︀C
8 6 3 7 mp2an AB⊔︀C2𝑜⊔︀C
9 sn1dom C1𝑜
10 2on 2𝑜On
11 djudom2 C1𝑜2𝑜On2𝑜⊔︀C2𝑜⊔︀1𝑜
12 9 10 11 mp2an 2𝑜⊔︀C2𝑜⊔︀1𝑜
13 domtr AB⊔︀C2𝑜⊔︀C2𝑜⊔︀C2𝑜⊔︀1𝑜AB⊔︀C2𝑜⊔︀1𝑜
14 8 12 13 mp2an AB⊔︀C2𝑜⊔︀1𝑜
15 1on 1𝑜On
16 onadju 2𝑜On1𝑜On2𝑜+𝑜1𝑜2𝑜⊔︀1𝑜
17 10 15 16 mp2an 2𝑜+𝑜1𝑜2𝑜⊔︀1𝑜
18 17 ensymi 2𝑜⊔︀1𝑜2𝑜+𝑜1𝑜
19 oa1suc 2𝑜On2𝑜+𝑜1𝑜=suc2𝑜
20 10 19 ax-mp 2𝑜+𝑜1𝑜=suc2𝑜
21 df-3o 3𝑜=suc2𝑜
22 20 21 eqtr4i 2𝑜+𝑜1𝑜=3𝑜
23 18 22 breqtri 2𝑜⊔︀1𝑜3𝑜
24 domentr AB⊔︀C2𝑜⊔︀1𝑜2𝑜⊔︀1𝑜3𝑜AB⊔︀C3𝑜
25 14 23 24 mp2an AB⊔︀C3𝑜
26 domtr ABCAB⊔︀CAB⊔︀C3𝑜ABC3𝑜
27 5 25 26 mp2an ABC3𝑜
28 1 27 eqbrtri ABC3𝑜