Metamath Proof Explorer


Theorem trclexi

Description: The transitive closure of a set exists. (Contributed by RP, 27-Oct-2020)

Ref Expression
Hypothesis trclexi.1 AV
Assertion trclexi x|AxxxxV

Proof

Step Hyp Ref Expression
1 trclexi.1 AV
2 ssun1 AAdomA×ranA
3 coundir AdomA×ranAAdomA×ranA=AAdomA×ranAdomA×ranAAdomA×ranA
4 coundi AAdomA×ranA=AAAdomA×ranA
5 cossxp AAdomA×ranA
6 cossxp AdomA×ranAdomdomA×ranA×ranA
7 dmxpss domdomA×ranAdomA
8 xpss1 domdomA×ranAdomAdomdomA×ranA×ranAdomA×ranA
9 7 8 ax-mp domdomA×ranA×ranAdomA×ranA
10 6 9 sstri AdomA×ranAdomA×ranA
11 5 10 unssi AAAdomA×ranAdomA×ranA
12 4 11 eqsstri AAdomA×ranAdomA×ranA
13 coundi domA×ranAAdomA×ranA=domA×ranAAdomA×ranAdomA×ranA
14 cossxp domA×ranAAdomA×randomA×ranA
15 rnxpss randomA×ranAranA
16 xpss2 randomA×ranAranAdomA×randomA×ranAdomA×ranA
17 15 16 ax-mp domA×randomA×ranAdomA×ranA
18 14 17 sstri domA×ranAAdomA×ranA
19 xptrrel domA×ranAdomA×ranAdomA×ranA
20 18 19 unssi domA×ranAAdomA×ranAdomA×ranAdomA×ranA
21 13 20 eqsstri domA×ranAAdomA×ranAdomA×ranA
22 12 21 unssi AAdomA×ranAdomA×ranAAdomA×ranAdomA×ranA
23 3 22 eqsstri AdomA×ranAAdomA×ranAdomA×ranA
24 ssun2 domA×ranAAdomA×ranA
25 23 24 sstri AdomA×ranAAdomA×ranAAdomA×ranA
26 1 elexi AV
27 26 dmex domAV
28 26 rnex ranAV
29 27 28 xpex domA×ranAV
30 26 29 unex AdomA×ranAV
31 trcleq2lem x=AdomA×ranAAxxxxAAdomA×ranAAdomA×ranAAdomA×ranAAdomA×ranA
32 30 31 spcev AAdomA×ranAAdomA×ranAAdomA×ranAAdomA×ranAxAxxxx
33 intexab xAxxxxx|AxxxxV
34 32 33 sylib AAdomA×ranAAdomA×ranAAdomA×ranAAdomA×ranAx|AxxxxV
35 2 25 34 mp2an x|AxxxxV