Metamath Proof Explorer


Theorem trclfv

Description: The transitive closure of a relation. (Contributed by RP, 28-Apr-2020)

Ref Expression
Assertion trclfv R V t+ R = x | R x x x x

Proof

Step Hyp Ref Expression
1 elex R V R V
2 trclexlem R V R dom R × ran R V
3 trclubg R V x | R x x x x R dom R × ran R
4 2 3 ssexd R V x | R x x x x V
5 trcleq1 r = R x | r x x x x = x | R x x x x
6 df-trcl t+ = r V x | r x x x x
7 5 6 fvmptg R V x | R x x x x V t+ R = x | R x x x x
8 1 4 7 syl2anc2 R V t+ R = x | R x x x x