Metamath Proof Explorer


Theorem trlat

Description: If an atom differs from its translation, the trace is an atom. Equation above Lemma C in Crawley p. 112. (Contributed by NM, 23-May-2012)

Ref Expression
Hypotheses trlat.l ˙=K
trlat.a A=AtomsK
trlat.h H=LHypK
trlat.t T=LTrnKW
trlat.r R=trLKW
Assertion trlat KHLWHPA¬P˙WFTFPPRFA

Proof

Step Hyp Ref Expression
1 trlat.l ˙=K
2 trlat.a A=AtomsK
3 trlat.h H=LHypK
4 trlat.t T=LTrnKW
5 trlat.r R=trLKW
6 simp1 KHLWHPA¬P˙WFTFPPKHLWH
7 simp3l KHLWHPA¬P˙WFTFPPFT
8 simp2 KHLWHPA¬P˙WFTFPPPA¬P˙W
9 eqid joinK=joinK
10 eqid meetK=meetK
11 1 9 10 2 3 4 5 trlval2 KHLWHFTPA¬P˙WRF=PjoinKFPmeetKW
12 6 7 8 11 syl3anc KHLWHPA¬P˙WFTFPPRF=PjoinKFPmeetKW
13 simp2l KHLWHPA¬P˙WFTFPPPA
14 1 2 3 4 ltrnat KHLWHFTPAFPA
15 6 7 13 14 syl3anc KHLWHPA¬P˙WFTFPPFPA
16 simp3r KHLWHPA¬P˙WFTFPPFPP
17 16 necomd KHLWHPA¬P˙WFTFPPPFP
18 1 9 10 2 3 lhpat KHLWHPA¬P˙WFPAPFPPjoinKFPmeetKWA
19 6 8 15 17 18 syl112anc KHLWHPA¬P˙WFTFPPPjoinKFPmeetKWA
20 12 19 eqeltrd KHLWHPA¬P˙WFTFPPRFA