Metamath Proof Explorer


Theorem trlcocnvat

Description: Commonly used special case of trlcoat . (Contributed by NM, 1-Jul-2013)

Ref Expression
Hypotheses trlcoat.a A = Atoms K
trlcoat.h H = LHyp K
trlcoat.t T = LTrn K W
trlcoat.r R = trL K W
Assertion trlcocnvat K HL W H F T G T R F R G R F G -1 A

Proof

Step Hyp Ref Expression
1 trlcoat.a A = Atoms K
2 trlcoat.h H = LHyp K
3 trlcoat.t T = LTrn K W
4 trlcoat.r R = trL K W
5 simp1 K HL W H F T G T R F R G K HL W H
6 simp2l K HL W H F T G T R F R G F T
7 simp2r K HL W H F T G T R F R G G T
8 2 3 ltrncnv K HL W H G T G -1 T
9 5 7 8 syl2anc K HL W H F T G T R F R G G -1 T
10 simp3 K HL W H F T G T R F R G R F R G
11 2 3 4 trlcnv K HL W H G T R G -1 = R G
12 5 7 11 syl2anc K HL W H F T G T R F R G R G -1 = R G
13 10 12 neeqtrrd K HL W H F T G T R F R G R F R G -1
14 1 2 3 4 trlcoat K HL W H F T G -1 T R F R G -1 R F G -1 A
15 5 6 9 13 14 syl121anc K HL W H F T G T R F R G R F G -1 A