Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
trlcocnvat
Next ⟩
trlconid
Metamath Proof Explorer
Ascii
Unicode
Theorem
trlcocnvat
Description:
Commonly used special case of
trlcoat
.
(Contributed by
NM
, 1-Jul-2013)
Ref
Expression
Hypotheses
trlcoat.a
⊢
A
=
Atoms
⁡
K
trlcoat.h
⊢
H
=
LHyp
⁡
K
trlcoat.t
⊢
T
=
LTrn
⁡
K
⁡
W
trlcoat.r
⊢
R
=
trL
⁡
K
⁡
W
Assertion
trlcocnvat
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
⁡
F
≠
R
⁡
G
→
R
⁡
F
∘
G
-1
∈
A
Proof
Step
Hyp
Ref
Expression
1
trlcoat.a
⊢
A
=
Atoms
⁡
K
2
trlcoat.h
⊢
H
=
LHyp
⁡
K
3
trlcoat.t
⊢
T
=
LTrn
⁡
K
⁡
W
4
trlcoat.r
⊢
R
=
trL
⁡
K
⁡
W
5
simp1
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
⁡
F
≠
R
⁡
G
→
K
∈
HL
∧
W
∈
H
6
simp2l
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
⁡
F
≠
R
⁡
G
→
F
∈
T
7
simp2r
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
⁡
F
≠
R
⁡
G
→
G
∈
T
8
2
3
ltrncnv
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
→
G
-1
∈
T
9
5
7
8
syl2anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
⁡
F
≠
R
⁡
G
→
G
-1
∈
T
10
simp3
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
⁡
F
≠
R
⁡
G
→
R
⁡
F
≠
R
⁡
G
11
2
3
4
trlcnv
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
→
R
⁡
G
-1
=
R
⁡
G
12
5
7
11
syl2anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
⁡
F
≠
R
⁡
G
→
R
⁡
G
-1
=
R
⁡
G
13
10
12
neeqtrrd
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
⁡
F
≠
R
⁡
G
→
R
⁡
F
≠
R
⁡
G
-1
14
1
2
3
4
trlcoat
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
-1
∈
T
∧
R
⁡
F
≠
R
⁡
G
-1
→
R
⁡
F
∘
G
-1
∈
A
15
5
6
9
13
14
syl121anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
⁡
F
≠
R
⁡
G
→
R
⁡
F
∘
G
-1
∈
A