Metamath Proof Explorer


Theorem trlconid

Description: The composition of two different translations is not the identity translation. (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses trlconid.b B=BaseK
trlconid.h H=LHypK
trlconid.t T=LTrnKW
trlconid.r R=trLKW
Assertion trlconid KHLWHFTGTRFRGFGIB

Proof

Step Hyp Ref Expression
1 trlconid.b B=BaseK
2 trlconid.h H=LHypK
3 trlconid.t T=LTrnKW
4 trlconid.r R=trLKW
5 eqid AtomsK=AtomsK
6 5 2 3 4 trlcoat KHLWHFTGTRFRGRFGAtomsK
7 simp1 KHLWHFTGTRFRGKHLWH
8 simp2l KHLWHFTGTRFRGFT
9 simp2r KHLWHFTGTRFRGGT
10 2 3 ltrnco KHLWHFTGTFGT
11 7 8 9 10 syl3anc KHLWHFTGTRFRGFGT
12 1 5 2 3 4 trlnidatb KHLWHFGTFGIBRFGAtomsK
13 7 11 12 syl2anc KHLWHFTGTRFRGFGIBRFGAtomsK
14 6 13 mpbird KHLWHFTGTRFRGFGIB