Metamath Proof Explorer


Theorem trlnid

Description: Different translations with the same trace cannot be the identity. (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses trlnid.b B = Base K
trlnid.h H = LHyp K
trlnid.t T = LTrn K W
trlnid.r R = trL K W
Assertion trlnid K HL W H F T G T F G R F = R G F I B

Proof

Step Hyp Ref Expression
1 trlnid.b B = Base K
2 trlnid.h H = LHyp K
3 trlnid.t T = LTrn K W
4 trlnid.r R = trL K W
5 simp3l K HL W H F T G T F G R F = R G F G
6 simp1 K HL W H F T G T F G R F = R G K HL W H
7 simp2l K HL W H F T G T F G R F = R G F T
8 eqid 0. K = 0. K
9 1 8 2 3 4 trlid0b K HL W H F T F = I B R F = 0. K
10 6 7 9 syl2anc K HL W H F T G T F G R F = R G F = I B R F = 0. K
11 10 biimpar K HL W H F T G T F G R F = R G R F = 0. K F = I B
12 simp3r K HL W H F T G T F G R F = R G R F = R G
13 12 eqeq1d K HL W H F T G T F G R F = R G R F = 0. K R G = 0. K
14 13 biimpa K HL W H F T G T F G R F = R G R F = 0. K R G = 0. K
15 simpl1 K HL W H F T G T F G R F = R G R F = 0. K K HL W H
16 simpl2r K HL W H F T G T F G R F = R G R F = 0. K G T
17 1 8 2 3 4 trlid0b K HL W H G T G = I B R G = 0. K
18 15 16 17 syl2anc K HL W H F T G T F G R F = R G R F = 0. K G = I B R G = 0. K
19 14 18 mpbird K HL W H F T G T F G R F = R G R F = 0. K G = I B
20 11 19 eqtr4d K HL W H F T G T F G R F = R G R F = 0. K F = G
21 20 ex K HL W H F T G T F G R F = R G R F = 0. K F = G
22 10 21 sylbid K HL W H F T G T F G R F = R G F = I B F = G
23 22 necon3d K HL W H F T G T F G R F = R G F G F I B
24 5 23 mpd K HL W H F T G T F G R F = R G F I B