Metamath Proof Explorer


Theorem trlnid

Description: Different translations with the same trace cannot be the identity. (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses trlnid.b B=BaseK
trlnid.h H=LHypK
trlnid.t T=LTrnKW
trlnid.r R=trLKW
Assertion trlnid KHLWHFTGTFGRF=RGFIB

Proof

Step Hyp Ref Expression
1 trlnid.b B=BaseK
2 trlnid.h H=LHypK
3 trlnid.t T=LTrnKW
4 trlnid.r R=trLKW
5 simp3l KHLWHFTGTFGRF=RGFG
6 simp1 KHLWHFTGTFGRF=RGKHLWH
7 simp2l KHLWHFTGTFGRF=RGFT
8 eqid 0.K=0.K
9 1 8 2 3 4 trlid0b KHLWHFTF=IBRF=0.K
10 6 7 9 syl2anc KHLWHFTGTFGRF=RGF=IBRF=0.K
11 10 biimpar KHLWHFTGTFGRF=RGRF=0.KF=IB
12 simp3r KHLWHFTGTFGRF=RGRF=RG
13 12 eqeq1d KHLWHFTGTFGRF=RGRF=0.KRG=0.K
14 13 biimpa KHLWHFTGTFGRF=RGRF=0.KRG=0.K
15 simpl1 KHLWHFTGTFGRF=RGRF=0.KKHLWH
16 simpl2r KHLWHFTGTFGRF=RGRF=0.KGT
17 1 8 2 3 4 trlid0b KHLWHGTG=IBRG=0.K
18 15 16 17 syl2anc KHLWHFTGTFGRF=RGRF=0.KG=IBRG=0.K
19 14 18 mpbird KHLWHFTGTFGRF=RGRF=0.KG=IB
20 11 19 eqtr4d KHLWHFTGTFGRF=RGRF=0.KF=G
21 20 ex KHLWHFTGTFGRF=RGRF=0.KF=G
22 10 21 sylbid KHLWHFTGTFGRF=RGF=IBF=G
23 22 necon3d KHLWHFTGTFGRF=RGFGFIB
24 5 23 mpd KHLWHFTGTFGRF=RGFIB